Development

Understanding Regular Expressions

Peter Robson, Just SQL /UK Oracle User Group

Summary

Regular expressions have long been used in the Unix world. With Oracle 10g, they have now entered the SQL toolbox. For those unfamiliar with them, regular expressions can be both complex and confusing, but do bring substantial flexibility to the developer. This paper attempts to introduce them to the competent SQL user who has no experience with regular expressions, either in 10g, or in the Unix world. Rather than simply list their parameters, this paper will demonstrate, using simple worked examples, how the four types of regular expressions can be used in everyday coding situations. It will show how these expressions are built on the existing and familiar SQL character functions, and will explain in detail each of the various parameters associated with the four regular expressions.

Background

The four regular expressions introduced into Oracle 10G are all based on the four SQL character functions ‘like’, ‘substr’, ‘instr’, and ‘replace’. Their names too are recognizable, all being prefaced with the text ‘regexp’, as follows:

REGEXP_LIKE

REGEXP_SUBSTR

REGEXP_INSTR

REGEXP_REPLACE

Each one of these terms will be explained and demonstrated, showing how the original abilities of the SQL character functions have been extended into the regular expression forms. Their function falls into one of two categories, either to identify patterns of data within discrete strings or attributes, or to manipulate target patterns within discrete strings or attributes. By ‘string’ or ‘attributes’, I mean a string literal that may be part of a SQL expression, or alternatively an attribute value held within a database table. It is when the two activities of identification and manipulation are combined that the true strength of regular expressions can be seen. They are indeed very powerful tools with which to both search and modify data, but with this power comes danger, which we will discuss later.

The nature of a presentation on a subject such as this lays great emphasis on the practical aspect of a live demonstration, and so the reader is encouraged to make use of the PowerPoint printed copy to follow the examples presented there.

Regexp_like

As indicated, this is based on the SQL character function ‘like’. Lets look at three example uses of ‘like’:

Select * from tab where field like ‘START%’;

Select * from tab where field like ‘_START%’;

Select * from tab where field like ‘%START%’;

In each case the pattern to be found is ‘START’, but the constructs enable a certain amount of choice over where that string is to be found. Either at the beginning of the string (irrespective of what may follow), or commencing at the 2nd character position in the string (and again irrespective of what may follow), or thirdly, anywhere in the string, irrespective of what may precede or follow. Note that in the second example, I have used the underbar symbol (‘_’) to indicate a single space.

The regular expression ‘regexp_like’ can of course achieve the same result, but uses a slightly different construct:

Select * from tab where REGEXP_LIKE(field,’START’);

Note that no percentage wild card is required – the match will happen if the string ‘START’ is found anywhere within the target field. This is where additional parameters allow you to control a lot more precisely exactly what will be matched with a regular expression. A variety of ‘metacharacters’, embedded within the target search string, enables you to control the condition of the match.

Metacharacters

It is worth listing examples of metacharacters before discussing in detail how some of them work:

.
 Any Character
+
 One or More of the previous expression

?
 Zero or One of the previous expression

*
 Zero or More of the previous expression

{m}
 Exact Count of the previous expression

{m,}
 Count of 'm' or more

{m,n}
 Count of at least 'm', maximum 'n'

[...]
 List of characters to be matched
[^ ...] List of characters NOT to be matched

|
 'Or', alternatively

(...)
 Group or sub-expression of characters

^
 Match from the first character in line / field

$
 Match the very last character in line / field

Most of the above are self-explanatory, but you should experiment with them in simple examples to see exactly how they vary the results you can obtain.

To return to our simple example, let’s use a simple metacharacter (^) to force our pattern search to begin at the first character position in our data source:

Select * from tab where REGEXP_LIKE(field,’^START’);

Here we would only match those fields in which the string START was located at the beginning of the field. This we achieve by inserting the metacharacter ^ (carrot, or hat) immediately before the required string. Notice that Oracle automatically distinguishes between metacharacters and normal text. If you need to include a character in your search template that is also a metacharacter, you can do this by using the ‘escape’ device of a backward slash, which forces the next character to be interpreted as normal text.

If we use the metacharacter ‘dot’ (or ‘stop’, ‘ . ‘), we can create a slightly anomalous query. Look at this:

Select * from tab where REGEXP_LIKE(field,’^...’);

Here we are looking for any three contiguous characters in our data source – they can be anything. We have also prefaced those dots with the hat - ^, instructing the search to begin at the beginning of the data field. Syntactically this construct is fine, it is just a bit superfluous. It is easy to make errors like this with regular expressions.

Our simple query could also be written as follows, which makes more explicit use of a pair of (complimentary) metacharacters, the round brackets:

Select * from tab where REGEXP_LIKE(field,’(^START)’);

But in this case the round brackets are superfluous, and might confuse.

There is a final aspect of ‘regexp_like’ to be noted, namely the optional ‘Match-Parameter’, which is used to control the case of the character pattern being searched for. So again, our simple example can include this parameter as follows:

Select * from tab where REGEXP_LIKE(field,’^START’,’i’);

Here the letter ‘i’ is used to indicate that the string START can be any mixture of upper or lowercase – it is to be case independent. Use of the only other alternative parameter of ‘c’ will force the character string to match exactly the case of the string in the query.

The formal definition of ‘regexp_like’ is as follows:

REGEXP_LIKE (source_string, pattern [, match_parameter])

Because it is enclosed in square brackets, the match parameter is defined as optional.

REGEXP_SUBSTR

We now know enough to progress on to the next regular expression, ‘regexp_substr’. This is in fact highly complimentary with ‘regexp_like’, the two work together most effectively.

The reason for this is that you can never actually see what is being matched by ‘regexp_like’ – all you see is the retrieval that you requested if the match is made. For example, you may inadvertently forget to switch the match parameter from case dependent to case independent, and may therefore get a result, but based entirely on a false premise. This is where ‘regexp_substr’ allows you to display the actual pattern that is successfully matched to the ‘regexp_like’ function.

Lets start with the formal definition of this expression:

REGEXP_SUBSTR (source, pattern [, position [, occurrence [, match_parameter]]])

Unlike ‘regexp_like’, this expression enables you to retrieve exactly the pattern within the text string or table field that matches the pattern as defined. So if the ‘regexp_like’ and ‘regexp_substr’ constructs are identical, you can be absolutely confident that what you see retrieved by ‘regexp_substr’ is exactly what is being matched by ‘regexp_like’.

Notice that there are a couple more optional parameters available for use with ‘regexp_substr’. But this makes it a superset of the ‘regexp_like’ construct, so enabling any construct in ‘regexp_like’ to be used with ‘regexp_substr’. Lets see how this can work:

Select REGEXP_SUBSTR(field,’START’) from tab where REGEXP_LIKE(field,’START’);

Complexity starts to appear if you want to use the match_parameter. In ‘regexp_substr’ it is the third optional parameter, which obliges you to insert values for the previous two parameters, namely for ‘position’ and ‘occurrence’. This is easy, however. ‘Position’ refers to the position in the text string from which to start looking for a pattern. The numeric ‘1’ will force the examination to commence from the beginning, and is the default. The ‘occurrence’ parameter simply indicates how many times you wish to find the string – the default is 1. (Note that this is not the same as the occurrence parameter in the ‘regexp_inst’r, which we will discuss subsequently).

We can modify our example to force a case independent search as follows, but we must insert at least the default values for the two preceding parameters in the ‘regexp_substr’ expression:

Select REGEXP_SUBSTR(field,’START’,1,1,’i’) from tab

 where REGEXP_LIKE (field,’START’,’i’);

The great benefit of using ‘regexp_like’ and ‘regexp_substr’ together is that they are an ideal method for debugging complex expressions. As with so much of SQL, it is the old problem of the declarative versus the non-declarative. Often one can build a syntactically correct SQL regular expression, but the actual semantic meaning of the expression can be very different from what you think you have written. By using these two expressions in tandem, and by doing several tests, you can both learn a lot more about regular expressions, and furthermore, be confident that the answer you get is the answer to the question you really asked, and not what you thought you asked.

REGEXP_INSTR

The third of the four regular expressions is distinctly different from the two previous examples that we have looked at. Now, the value returned from ‘regexp_instr’ is a numeric value which identifies the position of the start (or the end) of a particular pattern in the data source character string. The original SQL character function is defined as follows:

INSTR (source, pattern [, starting at M [, the Nth occurrence]])

The regular expression version takes this basic position and adds a couple of additional properties, the return_option and the match_parameter. Let’s have a look at the formal definition:

REGEXP_INSTR (source, pattern

 [, starting at M [, the Nth occurrence [, return_option [, match_parameter]]]])

It may be easier to understand what is happening if the above definition is transposed into free text:- the expression is looking for the position of the Nth occurrence of pattern in the source, starting at character position M, with the return_option of either the start or end position of the pattern, with an optional match_parameter governing the case sensitivity of the pattern search.

As with the two previous expressions, the source and the pattern operate in exactly the same way, complete with controlling metacharacters when required. Lets look at the following example:

select regexp_instr('Two beers or three beers, sir?','beer',1,1,0,'i') result

from dual;

RESULT

 5

The result gives the character position in the string of the first occurrence of the first letter of the pattern ‘beer’, which is of course the integer 5. We can modify the query to look for the second instance of ‘beer’:

select regexp_instr('Two beers or three beers, sir?','beer',1,2,0,'i') result

from dual;

RESULT

 20

If the return option is changed from ‘0’ to ‘1’, to return the integer indicating the end of the pattern string, the query and result appear as follows:

select regexp_instr('Two beers or three beers, sir?','beer',1,2,1,'i') result

from dual;

RESULT

 24

But here is a subtly easily overlooked. The result returned is not the numeric position of the last character of the search pattern ‘beer’, but rather the next position after the end of the pattern, which is the letter ‘s’..

REGEXP_REPLACE

The fourth of the regular expressions is the only one to actually manipulate a target pattern. As previously, it is based on the original SQL character function of ‘replace’, with the addition of three extra constraints. The definition of replace looks like this:

REPLACE (source, pattern, replace_string) of which an example could be as follows:
Select replace(‘this is a small example’,’small’,’tiny’ from dual;

The result takes the target string, substitutes ‘small’ with ‘tiny’ and returns the modified string ‘this is a tiny example’.

This structure is developed further in the regexp_replace, which has the following definition:

REGEXP_REPLACE (source, pattern

 [,replace_string [,position [, occurrence [, match_parameter]]]])

Once again, lets see what an example of this expression might look like. We can use it to prune out multiple instances of spaces between characters, as here:

select regexp_replace
('This written by a not-very good typist','(){2,}', ' ') Result

from dual;
The construct above contains three items: a string with multiple spaces between words, a pattern to search for (a single space identified in a closed bracket construct) followed by a numeric argument which says ‘find at least 2 contiguous spaces with no upper limit on how many occur together’, and finally the string with which to replace these multiple spaces, namely one single space.

The result would return the following string:

‘This written by a not-very good typist’

In the above example, we have not seen the use of either ‘position’, ‘occurrence’, or ‘match_parameter’. Just as with the previous regular expressions, their use is exactly the same. The following example shows how one can apply the replacement selectively within a string:

select regexp_replace
 ('Regexp could be used to encrypt text','(e)','-XYZ-',10,1,'i') result from dual;

In this example, we are going to use ‘regexp_replace’ as a crude form of encryption, by looking for the first occurrence of the letter ‘e’ after character position 10 in the string, and then replacing that letter with the string ‘-XYZ-‘. The final result looks like this:

’Regexp could b-XYZ- used to encrypt text’

Syntax

So far we have only considered the most simple of examples, and deliberately too. We have touched on the variety of metacharacters available to use. These are the characters which retain their own meaning within a pattern string, and which are used to apply constraints to the interpretation of that character string. But there are traps here – look at the use of the ‘hat’ or carrot’ (^). It can have two entirely different meanings, dependent on its context. In this form ([^…]) it is defining characters which must not be matched. Here (^…) it requires the parser to start hunting for the pattern from the beginning of the text data source (where ‘…’ stands for any three alpha numeric characters). Note also the use of the back slash \, the ‘escape’ character, which will force a metacharacter to be treated as an ordinary text character. It is all too easy to overlook these small aspects of a regular expression construct, which if misused can alter entirely the behaviour of the query.

We have not mentioned the character classes themselves. These are less confusing, and indeed if used carefully, can do much to remove some of the confusion which can arise in trying to manage complex strings. Let’s have a look at some of the more useful character classes:
[:alpha:]
alphabetic chars only

[:digit:]

numerics

[:lower:]
lower case alphabetic

[:cntrl:]

nonprinting or control characters

[:xdigit:]
hexadecimal

[:alnum:]
an alpha-numeric string

You can see immediately how a compound pattern expression, looking for both upper and lower case letters and numerics, constructed as follows:

[A-Za-z0-9]

can be simplified into a single expression as follows:

[[:alnum:]]

Note how the character classes are defined with opening and closing square brackets. Because we have replaced the pattern string ‘A-Za-z0-9’, which was itself contained within square brackets, those outer brackets have to be retained. The pairs of square brackets are a familiar feature of regular expressions – you will therefore immediately recognize that a character class is being used.

Synthesis

The above gentle introduction to regular expressions might seem straight forward, but it masks a degree of complexity that can become seriously confusing. Users familiar with the old SQL character functions that we have already looked at, will recall that you often had to use multiple functions to achieve the desired result. For example, ‘instr’ could be used to restrict both the start and the end point of a replace action, possibly even with the use of the ‘length’ function. This degree of complexity has been partially resolved with regular expressions, in that this sort of control can now be obtained within one expression. But equally, there is no reason why one cannot embed a succession of regular expressions, each within the other. Any one of these expressions can be embedded in any other, which automatically increases the overall complexity.

If you are building a complex suite of expressions, be sure to build incrementally, and test at each stage as you build up the layers. If you are trying to understand what one expression is actually doing, take it apart and break it down into its individual components, according to the formal definition of each expression. Clarity of layout is the great issue here, just as it is in writing and reading a complex piece of SQL code.

Conclusions

Regular expressions are a powerful addition to the SQL toolbox. As well as becoming familiar with their complexity and slightly confusing syntax (and this may not be a rapid task!), you should be rather careful where you employ these techniques. Inevitably, their use in a simple query such as the examples discussed in this paper against a text field in a table will result in a full table scan. With very large tables, this can result in disastrously slow execution times. Where large tables are involved, try to ensure that the regular expression operates on the smallest possible subset of a query result, by ensuring that as much data as possible is retrieved using high performance indexes, before applying time consuming regular expression processing.

Regular expressions can also provide beneficial functionality as part of pre-load validation, but again, only so long as load volumes are kept under careful review.

Finally – beware of using regular expressions when there is an easier way of accomplishing the same task! It may well be the case that with some carefully constructed SQL code, you can achieve the same result, with a consequent performance benefit too. If you still can’t achieve your objectives with ‘pure’ SQL, look again at the old character functions before finally resorting to the regular expressions.

Further help

Any internet search in which the words ‘Oracle’ and ‘Regular Expressions’ are submitted will return many useful pages of information. In particular, I would commend the following works for further reading, and indeed for ongoing reference material. Be careful with any text book addressing regular expressions in general. This will tend to be directed at the Unix / shell script community. Just to confuse things even further, every different context in which regular expressions appear tends to have its own syntax variants.

“Writing Better SQL Using Regular Expressions” – Alice Rischert
Google search; A previous article in Oramag. Highly recommended.

Oracle on-line documentation:
http://download-uk.oracle.com/docs/cd/B14117_01/server.101/b10759/toc.htm
(This is SQL Reference for 10g – search on ‘regexp’)

An excellent blog / discussion on Regular Expressions by Andrew Clarke (Radio Free Tooting) http://radiofreetooting.blogspot.com/2006/09/ useful-article-on-regex-in-oracle-10g.html

“Oracle Regular Expression Pocket Reference” (O’Reilly) Jonathan Gennick & Peter Linsley (cheap at $10!)

Peter Robson – Biographical Details:

Qualified as a geologist, then moved into IT in the late 1970’s, immediately specialising in database. Joined British Geological Survey in 1980; prime mover in having relational database adopted as the corporate data repository. Designed, built and extended the corporate Data Architecture covering multiple instances of Oracle. Built advanced replication software maintaining remote instances synchronous. Strong analytical and design skills combined with an active interest in extending the boundaries of SQL. Has presented at conferences (Oracle and others) all over Europe, the UK, and in North America, and is a Director of the UK Oracle User Group.

Peter Robson
JustSQL
Edinburgh
Scotland.

8

Paper 464

